Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins

نویسندگان

  • Hui Li
  • Stefan Pellenz
  • Umut Ulge
  • Barry L. Stoddard
  • Raymond J. Monnat
چکیده

Homing endonucleases (HEs) cut long DNA target sites with high specificity to initiate and target the lateral transfer of mobile introns or inteins. This high site specificity of HEs makes them attractive reagents for gene targeting to promote DNA modification or repair. We have generated several hundred catalytically active, monomerized versions of the well-characterized homodimeric I-CreI and I-MsoI LAGLIDADG family homing endonuclease (LHE) proteins. Representative monomerized I-CreI and I-MsoI proteins (collectively termed mCreIs or mMsoIs) were characterized in detail by using a combination of biochemical, biophysical and structural approaches. We also demonstrated that both mCreI and mMsoI proteins can promote cleavage-dependent recombination in human cells. The use of single chain LHEs should simplify gene modification and targeting by requiring the expression of a single small protein in cells, rather than the coordinate expression of two separate protein coding genes as is required when using engineered heterodimeric zinc finger or homing endonuclease proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases

Although engineered LAGLIDADG homing endonucleases (LHEs) are finding increasing applications in biotechnology, their generation remains a challenging, industrial-scale process. As new single-chain LAGLIDADG nuclease scaffolds are identified, however, an alternative paradigm is emerging: identification of an LHE scaffold whose native cleavage site is a close match to a desired target sequence, ...

متن کامل

Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease.

The LAGLIDADG homing endonucleases include free-standing homodimers, pseudosymmetric monomers, and related enzyme domains embedded within inteins. DNA-bound structures of homodimeric I-CreI and monomeric I-SceI indicate that three catalytic divalent metal ions are distributed across a pair of overlapping active sites, with one shared metal participating in both strand cleavage reactions. These ...

متن کامل

Identification of conserved Features of Laglidadg Homing endonucleases

LAGLIDADG family of homing endonucleases are rare-cutting enzymes which recognize long target sequences and are of great interest in genome engineering. Despite advances in homing endonuclease engineering, effective methods of broadening the range of cleaved sequences are still lacking. Here, we present a study of conserved structural features of LAGLIDADG homing endonucleases that might aid fu...

متن کامل

Rapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases.

Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucl...

متن کامل

Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His–Cys box homing endonucleases

The presence of a homing endonuclease gene (HEG) within a microbial intron or intein empowers the entire element with the ability to invade genomic targets. The persistence of a homing endonuclease lineage depends in part on conservation of its DNA target site. One such rDNA sequence has been invaded both in archaea and in eukarya, by LAGLIDADG and His-Cys box homing endonucleases, respectively...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2009